
PBFT [23] is a partially synchronous protocol for Byzantine state machine
replication.

Below we informally describe the protocol for the case when n = 3f + 1. It is
not hard to modify the protocol for the more general case n > 3f + 1. In our
description, we assume transactions are proposed in units called batches.

Normal-case operations. We first describe the normal-case operations of the
PBFT protocol, where all messages are signed by the sender.

1. The leader of the current view proposes a tuple (“propose”, v, `, batch) to all
nodes where v denotes the view number and ` denotes the sequence number.

2. When an honest node hears (“propose”, v, `, batch), if it has not sent a prepare
message for (v, `), it multicasts (“prepare”, v, `, batch).

3. When an honest node collects (“prepare”, v, `, batch) from 2f + 1 distinct
nodes for the same (v, `, batch) tuple, it multicasts (“commit”, v, `, batch).
Further, the honest node now considers prepared(v, `, batch) := 1.

4. When an honest node first collects (“commit”, v, `, batch) from 2f + 1 distinct
nodes for the same (v, `, batch) tuple; or when it first collects (“commited”, v, `, batch)
from f + 1 distinct nodes for the same (v, `, batch) tuple: the node consid-
ers lcommitted(v, `, batch) := 1 and multicasts (“commited”, v, `, batch). Here
lcommitted is short for “locally committed”.

The normal-case protocol satisfies the following important properties:

– Agreement. If two honest nodes each believes that prepared(v, `, batch) := 1
and prepared(v, `, batch′) := 1 respectively, then batch = batch′.

– Liveness under an honest leader. If the leader is honest and no honest node
has timed out since start of the latest view, then any batch submitted by an
honest node will be locally committed by all honest nodes in O(1) atomic
time steps.

– Ample proofs of preparedness. If at least one honest node considers lcommitted(v, `, batch) :=
1, then at least f + 1 honest node considers prepared(v, `, batch) := 1.
If an honest node believes that prepared(v, `, batch) := 1, then it can produce
2f+1 signed prepare messages that led to this belief. We refer to the collection
of these 2f + 1 prepare messages a proof-of-preparedness.

Notice that an immediate corrolary of the agreement property is that if two
honest nodes each believes that lcommitted(v, `, batch) := 1 and lcommitted(v, `, batch′) :=
1 respectively, then batch = batch′. However, the normal-case operation does
not guarantee, under a potentially corrupt leader, that if one honest node
thinks lcommitted(v, `, batch) := 1, other honest nodes will necessarily think
lcommitted(v, `, batch) := 1. This therefore motivates the view change protocol.

View change. The normal-case protocol alone does not guarantee liveness when
the leader is corrupt. To guarantee liveness even when the leader is corrupt, a
view change protocol is invoked upon timeouts.

Henceforth, we assume that a node’s output log consists of the maximal
sequence of locally committeed batches with increasing and consecutive sequence
numbers.



– If a node observes some transaction but the transaction does not get included
in the output log after a certain timeout, the node will complain and request
a view change. When announcing a view change request, an honest node
attaches a proof-of-preparedness for every batch it is prepared for. The same
timeout parameter used for a while, and then if after n view changes, things
are still bad, then everyone doubles their timeout value. In the partially
synchronous model, when the timeout backs off to Θ(δ) and the leader is
honest, liveness ensues. It is not hard to see that this allows us to ensure
O(nδ) worst-case response time where δ is the actual maximum network delay.

– If an honest node hears f + 1 valid view change requests for a new view v′, it
will echo the view change request by multicasting a view change message itself
for view v′, and including in the view change message a proof-of-preparedness
for any batch it is prepared for. This step is necessary for ensuring liveness of
the view change: recall that in the previous view, if at least f +1 honest nodes
locally committed some (v, `, batch), then all honest nodes will soon commit
(v, `, batch). However, it is possible that, say, only f honest nodes locally
committed some (v, `, batch) — in this case, f + 1 nodes will complain. But
the f honest nodes who locally committed (v, `, batch) may be happy and do
not initiate a complaint. Thus, we require that an honest node also complains
if at least f + 1 complaints (i.e., view change requests) have been received —
among these f + 1 complaints, at least one must come from an honest node.
Note also that when things are good, the adversary cannot hamper progress
by forcing view changes since the adversary controls only f nodes.

– When the leader for the new view v′ collects 2f +1 valid view change requests,
the set of 2f +1 valid view change requests together form a new-view message.
The leader then proposes the new-view message to all nodes. When an honest
node receives the new-view message, For every (v, `, batch) with a valid proof-
of-preparedness contained in the new-view message, the node acts as if it
has just received a (“propose”, v′, `, batch) message, therefore multicasts a
prepare message for the tuple, and continues as in the normal-case operations.

Due to the “ample proofs of preparedness” property of the normal-case opera-
tion, the following property holds: If an honest node believes that lcommitted(v, `, batch) =
1, then at least one valid proof-of-preparedness will be included in any valid
new-view message. This ensures that if at least one honest node believes that
lcommitted(v, `, batch) = 1, the tuple (v, `, batch) is guaranteed to carry over to
the new view, and therefore if other honest nodes locally commits (v, `, batch′)
in the new view, it holds that batch = batch′.

Finally, as long as the new leader is honest and no honest node has timed out
yet in the new view, then liveness ensues for the new view.


